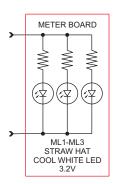
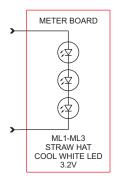
$V_s = Voltage Source$


 $V_f = Forward Voltage$

I = current (0.02 amps)

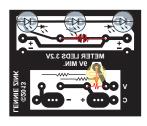
 R_d = Dropping Resistance (ohms)

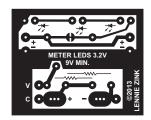
 $\text{Voltage Drop ($V_{\tiny d}$) = $V_{\tiny s}$ - $V_{\tiny f}$}$


Formula for resistance: $V_d/I=R_d$

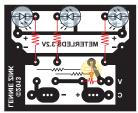
20 mA LED METER LIGHTS: PCB FV=3.2

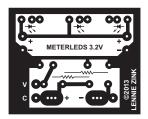
Voltage Source	Voltage Drop	Dropping Resistor	
V _s	V_{d}	R_d	CLOSE
15	11.8	590	620
12	8.8	440	470
9	5.8	290	300
5	1.8	90	100
3	0	0	0


PANEL METER PC BOARDS

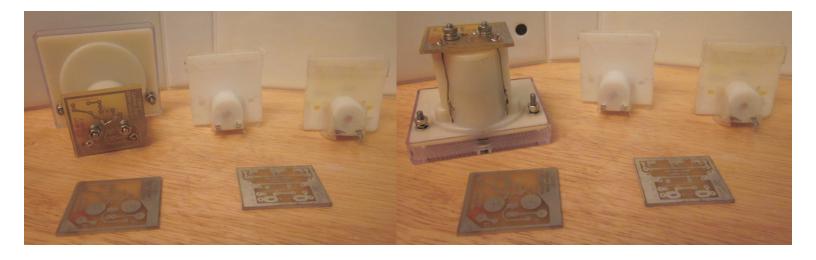


20 mA LED METER LIGHTS: PCB FV=9.6

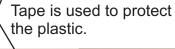

Voltage Source	Voltage Drop	Dropping Resistor	
V _s	V_d	R_d	CLOSE
15	5.4	270	270
12	2.4	120	120
9	0	0	0

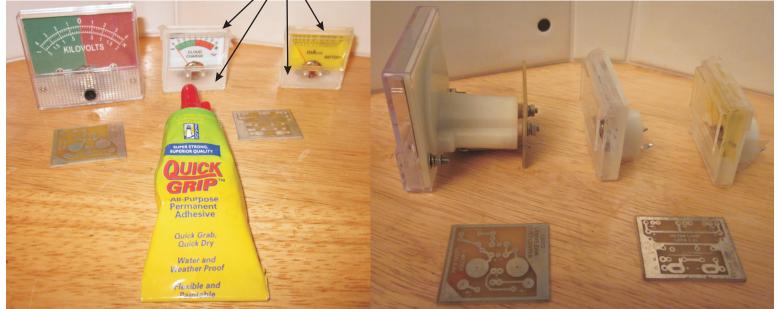

LEDS IN SERIES

LEDS IN PARALLEL


Mount trimmer on foil side of board for easy access.

LEDS IN SERIES




See greater detail on meters my "Sferics Detector."

The cap on the tube of glue is a wire nut. I didn't notice that the cap was cracked when I bought it. Broke right through, it did!

This glue is remarkably removable. Peels off pretty well, but it attacks plastics.

